; Trigonometric functions as complex exponentials. ; Based on Euler's identity: e^(i*x) = cos(x) + i*sin(x) ; "x" is an angle in radians. ; Unity relationship: sin(x)^2 + cos(x)^2 = 1 ; sin(x) (sine of x) = cos(pi/2 - x) sin=(e^(i*x)-e^(-i*x))/(2i) ; cos(x) (cosine of x) = sin(pi/2 - x) cos=(e^(i*x)+e^(-i*x))/2 ; tan(x) (tangent of x) = sin(x)/cos(x) = cot(pi/2 - x) tan=(e^(i*x)-e^(-i*x))/(i*(e^(i*x)+e^(-i*x))) ; cot(x) (cotangent of x) = cos(x)/sin(x) = tan(pi/2 - x) cot=i*(e^(i*x)+e^(-i*x))/(e^(i*x)-e^(-i*x)) ; sec(x) (secant of x) = 1/cos(x) = csc(pi/2 - x) sec=2/(e^(i*x)+e^(-i*x)) ; csc(x) (cosecant of x) = 1/sin(x) = sec(pi/2 - x) csc=2i/(e^(i*x)-e^(-i*x))