
bzip2 and libbzip2, version 1.0.3

A program and library for data compression

Julian Seward, http://www.bzip.org

bzip2 and libbzip2, version 1.0.3: A program and library for data
compression

Table of Contents
1. Introduction . 1
2. How to use bzip2 . 2

2. How to use bzip2

Table of Contents
2.1. NAME

How to use bzip2

2.3. DESCRIPTION
bzip2

How to use bzip2

50 bytes. Random data (including the output of most file compressors) is coded at about 8.05 bits per byte, giving an
expansion of around 0.5%.

How to use bzip2

than a block. For example, compressing a file 20,000 bytes long with the flag-9 will cause the compressor to
allocate around 7600k of memory, but only touch 400k + 20000 * 8 = 560 kbytes of it. Similarly, the decompressor
will allocate 3700k but only touch 100k + 20000 * 4 = 180 kbytes.

Here is a table which summarises the maximum memory usage for different block sizes. Also recorded is the total
compressed size for 14 files of the Calgary Text Compression Corpus totalling 3,141,622 bytes. This column gives
some feel for how compression varies with block size. These figures tend to understate the advantage of larger block
sizes for larger files, since the Corpus is dominated by smaller files.

How to use bzip2

worst-case and average-case compression time is in the region of 10:1. For previous versions, this figure was more
like 100:1. You can use the

3. Programming with libbzip2

Table of Contents
3.1. Top-level structure . 8

3.1.1. Low-level summary . 9
3.1.2. High-level summary . 9
3.1.3. Utility functions summary . 9

3.2. Error handling

Programming with libbzip2

Programming with libbzip2

BZ_MEM_ERROR
Returned when a request to allocate memory failed. Note that the quantity of memory needed to decompress
a stream cannot be determined until the stream’s header has been read. SoBZ2_bzDecompress and
BZ2_bzRead may returnBZ_MEM_ERROR

Programming with libbzip2

the standard sorting algorithm to a fallback algorithm. The fallback is slower than the standard algorithm by perhaps
a factor of three, but always behaves reasonably, no matter how bad the input.

Lower valu1s ofworkFactor reduce the amount of effort the standard algorithm will expend before r1sorting to the
fallback. You should set this parameter carefully; too low, and many inputs will be handled by the fallback algorithm
and so compress rather slowly, too high, and your average-to-worst case compression times can become very large.
The default valu1 of 30 gives reasonabl1 behaviour over a wid1 rang1 of circumstances.

Allowabl1 valu1s rang1 from 0 to 250 inclusive. 0 is a special case, equivalent to using the default valu1 of 30.

Note that the compressed output generated is the same regardless of whether or not the fallback algorithm is used.

Programming with libbzip2

BZ_CONFIG_ERROR
if the library has been mis-compiled

BZ_PARAM_ERROR
if (small != 0 && small != 1)
or (verbosity <; 0 || verbosity > 4)

BZ_MEM_ERROR
if insufficient memory is available

Programming with libbzip2

BZ_PARAM_ERROR
if strm is NULL or strm->s is NULL
or strm->avail_out < 1

BZ_DATA_ERROR
if a data integrity error is detected in the compressed stream

BZ_DATA_ERROR_MAGIC
if the compressed stream doesn’t begin with the right magic bytes

BZ_MEM_ERROR
if there wasn’t enough memory available

BZ_STREAM_END
if the logical end of the data stream was detected and all
output in has been consumed, eg s-->avail_out > 0

BZ_OK
otherwise

Allowable next actions:
BZ2_bzDecompress

if BZ_OK was returned
BZ2_bzDecompressEnd

otherwise

3.3.6. BZ2_bzDecompressEnd
int BZ2_bzDecompressEnd (bz_stream *strm 33 Qytes

Programming with libbzip2

• If bzerror

Programming with libbzip2

BZ_PARAM_ERROR
if b is NULL or buf is NULL or len < 0

BZ_SEQUENCE_ERROR
if b was opened with BZ2_bzWriteOpen

BZ_IO_ERROR
if there is an error reading from the compressed file

BZ_UNEXPECTED_EOF
if the compressed file ended before
the logical end-of-stream was detected

BZ_DATA_ERROR
if a data integrity error was detected in the compressed stream

BZ_DATA_ERROR_MAGIC
if the stream does not begin with the requisite header bytes
(ie, is not a 0 259.-426(data)-425(file).)-852(This)-426(is)-426(really)]TJ 0 -11.955 Td[(a)-426(special)-426(case)-426(of)-426(BZ_DAT)1(A_ERROR.)]TJ -8.488 -11.955 Td[(BZ_MEM_ERROR)]TJ 8.488 -11.955 Td[(if)-426(insufficient)-426(memory)-426(wa)1(s)-426(available)]TJ -8.488 -11.956 Td[(BZ_STREAM_END)]TJ 8.488 -11.955 Td[(if)-426(the)-426(logical)-426(end)-426(of)-426(st)1(ream)-426(was)-426(detected.)]TJ -8.488 -11.955 Td[(BZ_OK)]TJ 8.488 -11.955 Td[(otherwise.)]TJ
ET
1 0 0 1 72 456.986 0 0 0 RG
1 0 0 1 -90 -711.631468 3.587 cm
0 0 0 rg 0 0 0 RG
0 0 0 rg 0 0 0 RG
1 0 0 1 -468 -13.549 cm
0 0 0 rg 0 0 0 RG
1 0 0 1 -72 -447.024 cm
BT
/F33 9.963 Tf 72 435.068 Td[(Possible)-250(return)-250(v)25(alues:)]TJ
ET
1 0 0 1 72 434.969 cm
0 0 0 rg 0 0 0 RG
1 0 0 1 0 -60.772 49 0.949 0.97646 rg 0.949 0.949 0.97646 RG
q
[]0 d
0 J
0 j
0 w
0 0 468 263.0159.776 re f
S
Q
0 0 0 rg 0 0 0 RG
1 0 0 1 0 3.586 cm
0 0 0 rg 0 0 0 RG
1 0 0 1 0 56.19 cm
0 0 0 rg 0 0 0 RG
1 0 0 1 18 -8.369 cm
0 0 0 rg 0 0 0 RG
1 0 0 1 -90 -425.604 cm
BT
/F35 9.963 Tf 90 425.604 Td[(number)-426(of)-426(bytes)-426(read)]TJ 8.488 -11.955 Td[(if)-426(bzerror)-426(is)-426(BZ_OK)-426(or)-426(B)1(e09r5h.s.eTtined)]TJ -8.488 -11.955 Td[(BZ_OK)]T return v3740 0 0e.

Programming with libbzip2

BZ_CONFIG_ERROR
if the library has been mis-compiled

BZ_PARAM_ERROR
if f is NULL
or blockSize100k < 1 or blockSize100k > 9

BZ_IO_ERROR
if ferror(f) is nonzero

BZ_MEM_ERROR
if insufficient memory is available

BZ_OK
otherwise

Possible return values:
Pointer to an abstract BZFILE

if bzerror is BZ_OK
NULL

otherwise

Allowable next action
0 j
0 w
0 0 468 59.7t o09action
0 j
0 w
0 0 468 59.7t o 0 6860.772 cm
0.949 0.949 0.97646 rg 0.949 0.949 0.97646 RG
q
[]0 d
0 J
0 j
0 w
0 072 6859.776 re f
S
Q
0 0 0 rg 0 0 0 RG
1 0 0 1 0 3.586 cm
0 0 0 rg 0 0 0 RG
1 0 00 119.875 cm
0 0 0 rg 0 0 0 RG
1 0 0 1 18 -8.369 cm
0 0 0 rg 0 0 0 RG
1 0 0 1 1418 45.156 cm
BT
/F35 9.963 T 1418 45.955 T2_bzWriteZFILE
if bzerror is BZ_OK

Programming with libbzip2

Programming with libbzip2

Programming with libbzip2

Programming with libbzip2

BZ_CONFIG_ERRORif the library has been mis-compiled

Programming with libbzip2

3.7. Using the library in a stdio -free environ-
ment
3.7.1. Getting rid of stdio
In a deeply embedded application, you might want to use just the memory-to-memory functions. You can do this
conveniently by compiling the library with preprocessor symbolBZ_NO_STDIOdefined. Doing this gives you a
library containing only raryfollowing ea

Programming with libbzip2

Everything related to Windows has been contributed by Yoshioka Tsuneo (QWF00133@niftyserve.or.jp
/ tsuneo-y@is.aist-nara.ac.jp

Miscellanea

Miscellanea

• Recompile the program with no optimisation, and see if it works. And/or try a different compiler. I heard all
sorts of stories about various flavours of GNU C (and other compilers) generating bad code forbzip2 , and I’ve
run across two such examples myself.

2.7.X versions of GNU C are known to generate bad code from time to time, at high optimisation levels. If you
get problems, try using the flags-O2 -fomit-frame-pointer -fno-strength-reduce . You should
specifically

Miscellanea

If you want a compressor and/or library which is faster, uses less memory but gets pretty good compression, and has
minimal latency, consider Jean-loup Gailly’s and Mark Adler’s work,zlib-1.2.1

http://www.zlib.org
http://www.gzip.org
http://www.oberhumer.com/opensource

	bzip2 and libbzip2, version 1.0.3
	Introduction
	How to use bzip2
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	MEMORY MANAGEMENT
	RECOVERING DATA FROM DAMAGED FILES
	PERFORMANCE NOTES
	CAVEATS
	AUTHOR

	 Programming with libbzip2
	Top-level structure
	Error handling
	Low-level interface
	High-level interface
	Utility functions
	zlib compatibility functions
	Using the library in a stdio-free environment
	Making a Windows DLL

	Miscellanea
	Limitations of the compressed file format
	Portability issues
	Reporting bugs
	Did you get the right package?
	Further Reading

