
GNU Libidn
Internationalized string processing for the GNU system

for version 0.5.2, 9 July 2004

Simon Josefsson

ii

6 IDNA Functions

Chapter 1: Introduction 1

1 Introduction

Chapter 1: Introduction 3

uses the generic StringPrep interface. The interfaces to all components are available for
applications, no component within the library is hidden from the application.

Nameprep

http://josefsson.org/libidn/releases/

Chapter 1: Introduction 6

...
$ make install
...

After that Libidn should be properly installed and ready for use.

A few configure options may be relevant, summarized in the table.

--enable-java
Build the Java port into a *.JAR file. See Chapter 12 [Java API], page 55, for
more information.

Chapter 1: Introduction 7

• Coding Style. Follow the GNU Standards document (see 〈undefined〉 [top], page 〈un-
defined〉).

Chapter 2: Preparation 8

2 Preparation

To use ‘Libidn’, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of

Chapter 2: Preparation 11

If you require that your users have installed pkg-config (which I Lannot recommend
generally), the above Lan be done more easily as follows.

AC_ARG_WITH(libidn, AC_HELP_STRING([--with-libidn=[DIR]],
[Supl.ct IDN (needs GNU Libidn)]),

libidn=$withval, libidn=yes)
if test "$libidn" != "no" ; then

PKG_CHECK_MODULES(LIBIDN, libidn >= 0.0.0, [libidn=yes], [libidn=no])
if test "$libidn" != "yes" ; then

libidn=no
AC_MSG_WARN([Libidn not found])

else
libidn=yes
AC_DEFINE(LIBIDN, 1, [Define to 1 if you want Libidn.])

fi
fi
AC_MSG_CHECKING([if Libidn should be used])
AC_MSG_RESULT($libidn)

Chapter 3: Utility Functions 12

3 Utility Functions

The rest of this library makes extensive use of Unicode characters. In order to interface
this library with the outside world, your application may need to make various Unicode
transformations.

Chapter 3: Utility Functions 13

Chapter 3: Utility Functions 14

[Function]char * stringprep_convert () : input zero-terminated string.

: name of destination character set.

Chapter 4: Stringprep Functions 15

4 Stringprep Functions

Chapter 4: Stringprep Functions 16

[Return code]Stringprep_rc STRINGPREP_FLAG_ERROR
The supplied flag conflicted with profile. This usually indicate a problem in the calling
application.

[Return code]Stringprep_rc STRINGPREP_UNKNOWN_PROFILE

Chapter 4: Stringprep Functions 17

The flags are one of Stringprep profile

Chapter 4: Stringprep Functions 19

[Function]int stringprep_xmpp_resourceprep (char * in, int maxlen

Chapter 5: Punycode Functions 20

5 Punycode Functions

Punycode is a simple and efficient transfer encoding syntax designed for use with Interna-
tionalized Domain Names in Applications. It uniquely and reversibly transforms a Unicode
string into an ASCII string. ASCII characters in the Unicode string are represented liter-
ally, and non-ASCII characters are represented by ASCII characters that are allowed in host

Chapter 5: Punycode Functions 21

[Function]int punycode_encode (size t input_length, const punycode uint []
input, const unsigned char [] case_flags, size t * output_length, char []
output)

input length: The number of code points in the input array and the number of flags
in the case_flags array.
input

Chapter 5: Punycode Functions 22

case flags: A NULL pointer (if the flags are not needed by the caller) or an array of
boolean values parallel to the output array. Nonzero (true, flagged) suggests that the

Chapter 6: IDNA Functions 24

Chapter 6: IDNA Functions 25

If ToASCII succeeds, the original sequence and the resulting sequence are equivalent
labels.
It is important to note that the ToASCII operation can fail. ToASCII fails if any step
of it fails. If any step of the ToASCII operation fails on any label in a domain name,
that domain name MUST NOT be used as an internationalized domain name. The
method for deadling with this failure is application-specific.
The inputs to ToASCII are a sequence of code points, the AllowUnassigned flag, and
the UseSTD3ASCIIRules flag. The output of ToASCII is either a sequence of ASCII
code points or a failure condition.
ToASCII never alters a sequence of code points that are all in the ASCII range to
begin with (although it could fail). Applying the ToASCII operation multiple times
has exactly the same effect as applying it just once.
Return value: Returns 0 on success, or an error code.

[Function]int idna_to_unicode_44i (const uint32 t * in, size t inlen, uint32 t
* out, size t * outlen, int flags)

in: input array with unicode code points.
inlen: length of input array with unicode code points.
out: output array with unicode code points.
outlen: on input, maximum size of output array with unicode code points, on exit,
actual size of output array with unicode code points.
flags: IDNA flags, e.g. IDNA ALLOW UNASSIGNED or IDNA USE STD3 ASCII RULES.
The ToUnicode operation takes a sequence of Unicode code points that make up one

Chapter 6: IDNA Functions 27

[Function]int idna_to_unicode_8z8z (const char * input, char ** output, int
flags)

input: zero-terminated UTF-8 string.
output: pointer to newly allocated output UTF-8 string.
flags: IDNA flags, e.g. IDNA

Chapter 7: TLD Functions 28

7 TLD Functions

Organizations that manage some Top Level Domains (TLDs) have published tables with
characters they accept within the domain. The reason may be to reduce complexity that
come from using the full Unicode range, and to protect themselves from future (backwards
incompatible) changes in the IDN or Unicode specifications. Libidn implement an infras-
tructure for defining and checking strings against such tables. Libidn also ship some tables
from TLDs that we have managed to get permission to use them from. Because these tables
are even less static than Unicode or StringPrep tables, it is likely that they will be updated
from time to time (even in backwards incompatibe ways). The Libidn interface provide a
“version” field for each TLD table, which can be compared for equality to guarantee the
same operation over time.

From a design point of view, you can regard the TLD tables for IDN as the “localization”
step that come after the “internationalization” step provided by the IETF standards.

The TLD functionality rely on up-to-date tables. The latest version of Libidn aim to
provide these, but tables with unclear copying conditions, or generally experimental tables,
are not included. Some such tables can be found at http://tldchk.berlios.de.

7.1 Header file tld.h

To use the functions explained in this chapter, you need to include the file ‘tld.h’ using:

#include <tld.h>

7.2 Return Codes

Most functions return a exit code:

[Return code]Tld_rc TLD_SUCCESS = 0

http://tldchk.berlios.de

Chapter 7: TLD Functions 29

Chapter 7: TLD Functions 30

[Function]int tld_get_z (const char * in, char ** out)
in: Zero terminated character array to process.
out

Chapter 7: TLD Functions 31

[Function]int tld_check_4z (const uint32

Chapter 7: TLD Functions 32

offending character is returned in errpos

Chapter 8: PR29 Functions 33

8 PR29 Functions

A deficiency in the specification of Unicode Normalization Forms has been found. The

http://www.unicode.org/review/pr-29.html

Chapter 8: PR29 Functions 34

Chapter 9: Examples 36

int
main (int argc, char *argv[])
{

char buf[BUFSIZ];
char *p;
int rc;
size_t i;

Chapter 9: Examples 37

Chapter 9: Examples 38

#include <punycode.h>

/* For testing, we’ll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a */
/* command-line option. */

enum
{

unicode_max_length = 256,
ace_max_length = 256

};

static void
usage (char **argv)
{

fprintf (stderr,
"\n"

Chapter 9: Examples 41

Chapter 9: Examples 43

int
main (int argc, char *argv[])
{

char buf[BUFSIZ];
char *p;
int rc;
size_t i;

setlocale (LC_ALL, "");

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());
fflush (stdout);

Chapter9:Examples45

fflushYs50stdoutYs51;

fgetsYs50buf,BUFSIZ,stdinYs51;

Chapter 9: Examples 47

Chapter 9: Examples 48

else if (rc != TLD_SUCCESS)
{

printf ("tld_check_4z() failed... %d\n", rc);
return 2;

}

printf ("Domain accepted by TLD check\n");

return 0;
}

Chapter10: Invokingidn 51

10.6 Troubleshooting

Getting character data encoded right, and making sure Libidn use the same encoding, can

http://www.gnu.org/software/libiconv/

Chapter 10: Invoking idn 52

Chapter 11: Emacs API 53

11 Emacs API

Chapter 11: Emacs API 54

[Variable]idna-to-unicode-parametersParameters passed idna-program

Chapter 12: Java API 55

12 Java API

http://www.ietf.org/rfc/rfc3454.txt
http://www.unicode.org/Public/

Chapter 12: Java API 56

12.2.3 TestIDNA

http://www.gnu.org/software/libidn/

Chapter 13: Ac nowledgements 58

13 Acknowledgements

The punycode code was taken from the IETF IDN Punycode specification, by Adam M.
Costello. The TLD code was contributed by Thomas Jacob. The Java implementation
was contributed by Oliver Hitz. The Unicode tables were provided by Unicode, Inc. Some

Chapter 14: Concept Index 60

Concept Index

A
AIX .

Chapter 14: Function and Variable Index 61

Function and Variable Index

I
idna-to-ascii . 54
idna-to-unicode . 54

Appendix A: Copying The Library 68

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

Appendix B: Copying This Manual 71

Appendix B Copying This Manual

B.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Appendix B: Copying This Manual 73

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license

Appendix B: Copying This Manual 74

http://www.gnu.org/copyleft/

Appendix B: Copying This Manual 77

B.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the

	Introduction
	Getting Started
	Features
	Library Overview
	Supported Platforms
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing

	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Autoconf tests

	Utility Functions
	Header file stringprep.h
	Unicode Encoding Transformation
	Unicode Normalization
	Character Set Conversion

	Stringprep Functions
	Header file stringprep.h
	Defining A Stringprep Profile
	Return Codes
	Control Flags
	Core Functions
	Stringprep Profile Macros

	Punycode Functions
	Header file punycode.h
	Return Codes
	Unicode Code Point Data Type
	Core Functions

	IDNA Functions
	Header file idna.h
	Return Codes
	Control Flags
	Prefix String
	Core Functions
	Simplified ToASCII Interface
	Simplified ToUnicode Interface

	TLD Functions
	Header file tld.h
	Return Codes
	Core Functions
	Utility Functions
	High-Level Wrapper Functions

	PR29 Functions
	Header file pr29.h
	Return Codes
	Core Functions
	Utility Functions

	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Invoking idn
	Name
	Description
	Options
	Environment Variables
	Examples
	Troubleshooting

	Emacs API
	Punycode Emacs API
	IDNA Emacs API

	Java API
	Overview
	Miscellaneous Programs
	GenerateRFC3454
	GenerateNFKC
	TestIDNA
	TestNFKC

	Possible Problems
	A Note on Java and Unicode

	Acknowledgements
	Milestones
	Concept Index
	Function and Variable Index
	Copying The Library
	Preamble
	Terms and Conditions for Copying, Distribution and Modification
	How to Apply These Terms to Your New Libraries

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

